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Can p-Adic Numbers be Useful to Regularize 
Divergent Expectation Values of Quantum 
Observables? 
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We show how p-adic analysis can be used in some cases to treat divergent series 
in quantum mechanics. We consider examples in which the usual theory of the 
Schrrdinger equation would give rise to an infinite expectation value of the 
energy operator. By using p-adic analysis, we are able to get a convergent 
expansion and obtain a finite rational value for the energy. We present also the 
main ideas to interpret a quantum mechanical state by means of p-adic 
statistics. 

1. I N T R O D U C T I O N  

The first quantum model over the field of p-adic numbers Qp was 
considered by Beltrametti and Cassinelli (1962), investigating the problem 
of the choice of  a number field in quantum theories from the position of  
quantum logic. Great interest in p-adic physics has been present in some 
researches in string theory (Volovich, 1987, 1988" Grossman, 1987; Freund 
and Olson, 1987; Olson et al., 1987; Frampton and Okada, 1988). 

The main idea of  these p-adic string investigations was to attempt to 
describe the space-time at Planck distances with the aid of  the field of 
p-adic numbers Qp. This agrees with an old idea about violations of  
Archimedean axioms at Planck distances and the non-Archimedean num- 
ber field Qp can be a good mathematical object to describe such physical 
models. 
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In these articles problems with the physical interpretation of such 
high-level models as p-adic strings were presented and so simpler models 
such as p-adic quantum mechanics and field theory were also investigated 
(Vladimirov and Volovich, 1989a,b; Volovich et al., 1990; Khrennikov, 
1990, 1991). 

There are two main approaches to p-adic quantization. The first 
approach is based on a complex-valued wave function of p-adic argument 
~,: Q3 ~ C .  

The second one is based on a wave function of p-adic argument which 
assumes its value in some extensions of Qp such as the quadratic extensions 
or the field C? of complex p-adic number; for the definition of this field see, 
for instance, Mahler (1973). 

We are interested in the second approach; the reader can find a 
description of the first approach in [Vladimir and Volovich (1989a,b), 
Volovich et al. (1990), and Olson et al. (1987) and a description of the 
second one in Khrennikov (1990, 1991). 

In  this paper we shall use p-adic numbers to describe quantum 
mechanical models to compute the mean energy value. Our main idea is the 
following. 

We interpret the symbols xl,  x2, x 3 used for the coordinates in the 
Schr6dinger equation like formal variables and the wave amplitude 
O(xl, x2, x3) as a formal series: 

n = O m = O k = O  

The coefficients fnm of the expansion are assumed to be rational numbers; 
if one assumes that the variables Xl, x2, x3 are real, one gets a standard 
wave function ~p; on the contrary, by assuming that the variables xl,  x2, x3 
are p-adic numbers, one gets a new model of quantum mechanics. 

Let ~k(x) (x real) be a map not belonging to L2(R, dx). In some cases, 
its p-adic realization ~O (x p-adic) belongs to L2(Qp, dx); see Khrennikov 
(1990) for p-adic Lebesgue distributions. 

In such cases there is the opportunity to interpret ~k(x) as the p-adic- 
valued quantum mechanical wave function and so consider new models in 
quantum mechanics. 

It is also possible that ~k belongs to both functional spaces Lz(R, dx), 
L2(Qp, dx); in this case, however, the normalization constants are in 
general different, since the values of the integrals which one has to perform 
are completely different. Namely, if 
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m 

we denote by ~P,,Rf q,/CA and r = @/~/-B the normalized states, 
respectively. 

Let us consider such a situation; in this case it is possible that the 
mean value of the energy (E)r is divergent while the mean value 
(E)~,, Q is well defined. Now, if the last mean value belongs to Q, we have 
an exac~ value of the energy with respect to the quantum state ~. In this 
case we have constructed a procedure able to give a rational number for the 
energy when the standard theory would have furnished an infinite value. 

We are interested in describing examples of this type. In these cases 
there is the problem of interpreting statistics for p-adic valued wave 
functions; an interpretation was proposed in Khrennikov (1992) following 
a way similar to the standard one. The basis of this interpretation is a 
p-adic frequency theory of probability [compare to the von Mises (1953) 
theory of frequency of probability in the real case]. Since relative frequen- 
cies are always rational numbers, we define p-adic probabilities as limits of 
relative frequencies with respect to p-adic topology on Q. 

2. MATHEMATICAL BASIS 

2.1. p-Adic Numbers 

Let us recall some notions on p-adic numbers. Let Q be the field of 
rational numbers; by means of the standard norm, we can complete it by 
obtaining the field of real numbers R. 

A different norm can be introduced on Q which is called the p-adic 
norm; by completing the field Q with this norm we get the field of p-adic 
numbers Qp. 

A famous theorem of number theory (Mahler, 1973) tells us that the 
field Q can be completed only in these two ways. 

Let p be a prime positive integer number (p r 1); for any nonzero 
rational number x e Q there is a unique way to write x as x = p Vm/n. Here 
m and n are integers which are not divisible by p, while v is an integer 
number. This equation is a trivial consequence of the decomposition of x 
in prime factors. 

The p-adic norm is defined as 

[X[p =lx~mlnl, =p-", 4o[, =o (I) 

and satisfies the strong triangular inequality 

Ix + ylp <- max([X[p, lyl~). (2) 

This norm is non-Archimedean (Mahler, 1973). 
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If we complete Q with respect to [ �9 [p, we get Qp, the field of p-adic 
numbers. 

For the convenience of the reader, we recall that any p-adic number 
can be uniquely written in the form 

x =  ~ akp k (3) 
k ~  - -n  

where the numbers ak are integers, ak = 0, 1 , . . . ,  p - 1. Here the number n 
is not fixed, but is a function of x. This expression is closely related to the 
usual decimal expression of a real number. 

We write here two inequalities which will be useful in the following: 

pO-n)/(p - -  1) ~_~ [n!lp <-- npp ~/(1- P), [nt[p ~ I/'/ip < 1 (4) 

2.2. p-Adic Gaussian and Lebesgue Distributions 

The first definition of p-adic Gaussian distributions was proposed in 
Khrennikov (1990) on the basis of the theory of p-adic-valued distribu- 
tions. 

p-Adic Gaussian distributions are distributions with quadratic expo- 
nent in their Fourier or Laplace transforms. This point is quite compli- 
cated; great care has to be taken since there is no possibility to introduce, 
in p-adic theory, a well-defined, invariant analog of Lebesgue measure 
(Monna, 1970); if a p-adic map is analytic, then formal integration is 
possible, but there is no way to extend such a measure to smooth maps. On 
the contrary, by using the theory of generalized maps (distribution), one 
can define Laplace and Fourier transforms and give the definition which we 
stated before. 

It can be shown that the Gaussian distribution v(dx)= e x p ( - x  2) dx 
can be defined by the requirements 

fQ x k+ le-X2 dx = 0 for all k = 0, 1, 2 (5) 
P 

Q (2k)~ 
p x 2 k e - :  dx = (k!)24 k (6) 

Now, we can extend Gaussian integrals to polynomial and analytical maps 
by linearity: 

fo f(x)e-: dx = fQ x e-: dx, fn ~Qp (7) 
p n = 0  p 

If  this series is convergent in Qp, we say that f is summable. 
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set 
Now we define Lebesgue distribution; for any analytical map ~b(x), we 

fQ r dx= fQ (4~(x)e:)e-X2dx (8) 

2.3. Extensions of Qp and Hilbert Spaces I 

First of  all, we consider a p-adic analog of  complex numbers. We 
know that the field of  complex numbers C is the quadratic extension of  R. 
In this case we have a very simple algebraic structure because this quadratic 
extension is, at the same time, the algebraic closure of  the field of  real 
numbers. In the p-adic case there is no such simple structure, since there is 
no unique quadratic extension as in the real case. If  p = 2, then there are 
seven different quadratic extensions, and if p # 2, then there are three 
different quadratic extensions. All these quadratic extensions are not alge- 
braically closed. The same problem is present for any extensions of finite 
order. The algebraic closure of Qp is constructed as the union of  all the 
algebraic extensions of  all orders. Since this algebraic closure is not 
complete, we must consider the completion of  this field. Finally, since this 
completion is algebraically closed, we define this completion as Cp, the 
so-called field of  complex p-adic numbers (Mahler, 1973). 

We introduce now a coordinate Hilbert space oe:; it is the set of  the 
sequences 

f=  (fo,fl . . . .  , f , , . . .)  for f: eCp (9) 

such that the expansion 

L:I2= (lO) 
n=0 

is convergent in Cp. We define also the internal product 

(f,g) = ~ fng. (11) 
n = 0  

which is Cp-valued. The main difference with respect to the real case is that 
we cannot generate a norm by using this scalar product, since bfl 2 is, first 
of  all, a Q?-valued map. 

So we define the following norm: 

][fll = max L/', ]p (12) 
0 ~ n < o o  

which is non-Archimedean: 

]!f + gll ~ max(]]fll, Ilgll) (13) 
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In this case we have the following analog to the Cauchy equality: 

I(f, g)ip <- Ilfll" I[gl[ (14) 

Let (E, I1 I1 ) be a Banach non-Archimedean Cp-linear space en- 
dowed with a symmetric bilinear form (., ")e: E • E ~ Cp. If  there exists an 
isomorphism I: ~ ~ E such that III 11  = Nfll and  (If, Ig)  = ( f ,  g), we say 
that E is a p-adic Hilbert space (Khrennikov, 1990). 

We used this definition to restrict our attention to Hilbert spaces which 
are isomorphic to coordinate Hilbert spaces, since we have no analog to the 
classical result stating that any separable Hilbert space is isomorphic to/2,  

A set {e, }~= 0 of vectors in E is said to be an orthonormal basis of the 
p-adic Hilbert space E if every x ~ E can be uniquely written in the form 

x = ~ x .e .  with x,,~Cp (15) 
n = O  

(en, em)e = 6.m and I[e, = 1 

Remark. If  we consider in aft the sequences obtained with a single 1 in 
the k place, ak = (0, 0 , . . . ,  1 . . . . .  0, 0), then the elements e, = Ian form an 
orthonormal basis of the p-adic Hilbert space E. 

Remark. The dual space E '  is not isomorphic to E. 

2.4. p-Adic Theory of Probability 

Let A be a given observable quantity and let ~ = (~  . . . . .  a m , . . . )  be 
the set of all possible values assumed by A; let 5 r be a random experiment 
measuring A. 

If we repeat this experiment N times, we get a sequence ( x ~ , . . . ,  xN) 
(xj ef t)  of  values obtained from the measure of  A. We can compute the 
relative frequencies after N experiments vN(~j)=n(~j) /N,  where j =  
1 . . . . .  N and n(~s) denotes the number of times that the ~j value is 
obtained in N experiments. 

We can ideally consider the limit for N ~ ~ .  In standard theory this 
limit of  elements of  Q is considered with respect to the standard topology 
of the absolute value, thus yielding a real value probability (von Mises, 
1953). In our framework, we consider the limit with respect to the p-adic 
topology of Q. We so define the p-adic probability of the ~j value: 

P(~s) = lim v(~j) (16) 
N - - ~  

This limit does not exist in general; if it exists, following von Mises, we 
shall say that the random sequence (xl, x2 . . . . .  xN . . . .  ) is p-adic collective 
(Khrennikov, 1992). 
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It can be shown that this probability definition has the additive 
property, P(B u D) = P(B) + P(D) if B c~ D = ~ ,  and normalization prop- 
erty, P(f~) = 1. However, a new unusual property is present: while in the 
standard theory of probability the limit of the frequency amplitudes, if it 
exists, is a real number in the segment [0, 1], in the p-adic theory of 
probability the limit can be any arbitrary p-adic number. 

2.5. p-Adic-Valued Quantum Mechanics and Its Statistical Interpretation 

The p-adic Hilbert space (E, II tie, ( , ) e )  is the main object of 
p-adic-valued quantum mechanics. 

We consider vectors ~ EE as quantum states and Cp-linear operators 
in E with Qp spectrum as observables. 

Remark. We have assumed this requirement for the operators describ- 
ing observables since it is impossible to consider self-adjoint operators; 
recall that E and E'  are not isomorphic. 

In this paper we devote our attention to operators with discrete 
spectrum. Let us consider a physical observable operator/-) and denote by 
{e,.}~=0 the set of its eigenvectors: 

I~ei= Eiei, where EIsCp (17) 

We consider the situation in which the set {e,. }T= 0 is a basis for E. At the 
moment, we have no theorem ensuring that this fact is always true. 

Every vector ~ a E  can bc expai~ded in tl~,; 2"olin 

r = ~, Olei, where r (18) 
i=0 

We present a p-adic statistical interpretation of the states ~k which are 
normalized [t~IE = (~b, ~,)~ = 1] and such that ~b~ ~Qp for all i. This last 
requirement is necessary since it is not possible to introduce a "complex 
conjugation" in Cp (W. Schikhof, private communication). The p-adic limit 
for N ~ oo of the frequency amplitudes vu(Ei) = n(Eg)/N gives the p-adic 
probability of the value E;: 

P(E,)=OF for i = 0 , 1  . . . .  (19) 

3. NEW QUANTUM STATES 

Let us consider the Hamiltonian 

/ ~ =  d 2 
d x  2 + )1.2x2 + 2, where 2~Q, ) , > 0  (20) 
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The variable x can be regarded as a formal  one, and it is possible to realize 
bo th  in L2(R , dx) and in Lz(Qp , dx). 

Let us consider the analytical m a p  

~O(x) = e zx2/2 (21) 

Formal ly ,  it is an eigenfunction of  / t  cor responding to the eigenvalue 
Eo = 0. Since this function does not  belong to L2(R, dx), it would be 
impossible to realize it as a quan tum state in usual q u a n t u m  mechanics;  
now we propose  a probabi l i ty  in terpreta t ion of  it. 

Consider  x as a p -ad ic  variable. The funct ion (21) is analytical  in a 
ne ighborhood  o f  zero. Let us try to normal ize  it: 

B = fQ ~12(x) dx = fQ + ')X2v(dx) 
p p 

= ~ (2 "J[- 1) n fQ x 2 n y ( d x )  
~=o n[ p 

. = o  t ") n 

By using the inequality (4), we can show that  this series converges if  

lim 2n (12 + l ip )"p  ~4-p-") /~  -p) = 0 (23) 
. - .  o~ 14"J. 

For  example,  if p = 2, one can get the est imate 12 + 11. < 1/8 (for 
instance, 2 = 15, 31 . . . .  , 1 3 / 3 , . . . ) .  

Let us return to the general case; if  e_quation (22) converges,  we can 
normal ize  ~O(x) and define ~k,,Qp(x) = ~O/x/B. In  this case 

and we can propose  a statistical in terpreta t ion for  the energy E0 = 0 state 
for  this Hamil tonian .  

This example  can be generalized to a general potent ial  funct ion V(x). 
Let 

d 2 
tq = --~x 2 + V(x) (24) 

with 

V(x) = (2 + 1)2q'2(x) + (2 + 1)q"(x) + 22(2 + 1)q'(x)x + 22x 2 + 2 

(26) 
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and 

q ( x ) = a , x " + . . . + a 3 x  3, where aj, 2~Q (26) 

and a, (2 + 1) > 0. 
Now let us consider the function 

f (x)  = exp[(2 + 1)q(x) + 2x2/2] (27) 

Formally, it is an eigenfunction of  the Hamiltonian ~ with zero eigenvalue, 
Eo = 0. Since a,(2 + 1) > 0, this map does not belong to L2(R, dx) and its 
normalization is impossible. 

Now we try to realize f(x) as a map of p-adic argument. We get 

A = fo f2(x) dx = fo e('~ + ')[2q(x)+ xZlv(dx) 
p p 

= ~ ( 2 + l ) m f Q  
m = 0 m! [2q(x) + xZ]'v(dx) (28) 

p 

This expansion converges if [2 + 1 ]p is sufficiently small. 

4. p-ADIC RENORMALIZATION OF EIGENFUNCTIONS 

In this section we study a case in which the wave function ~O belongs 
to both spaces L2(R, dx) and L2(Qp, dx), but the computation of the 
expectation value of the energy is possible only in the p-adic picture. 

Let us consider the Hamiltonian of the harmonic oscillator: 

1 { d 2 2\ 
= ~ ~ -~-/x2 + x ) (29) 

If  {h,(x)}~=0 is a system of Hermitian polynomials 

d" h,(x) = e x2/2 - -  e-x2/2 (30) 
dx n 

then 

1 I~e,,(x) =(n  +~)e,(x) 

where e,(x) = h,(x) exp(-x2/2) .  
If  we calculate 

f_ -o~ e~(x) dx = x/~Z"n! 
o o  

(31) 

(32) 
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we see that the functions 

1 
~.(x) = e.(x) rc 1/4(2"n !) 1/2 (33) 

are normalized with respect to the Lz(R , dx) norm. Consider now an 
arbitrary function 

u(x) = ~ uiOi(x) eLz(R ,  dx) (34) 
i = 0  

which we suppose normalized. Compute the mean value of  the energy; it is 

<E>u = (Hu, u) - i + lu, I = (35) 
i = 0  

Is this series convergent or not? It depends. 

Example. Suppose that p is any fixed prime number. Let u; 4:0 iff 
i = (p + 1) 2k (k = 0, 1, 2 . . . .  ) and u s =pk / (p  + 1)k in this case: 

u(x) = ei (x) (36) 
i = 0  

Since Ilul12 = (p + 1)2/(2p + 1), we can normalize u by putting 

u.(x) [ 2p + I ]1~ ~ p * 
=L(~-+-i~j ;_Z0(~-f) e,(x) (37) 

Let us consider the series (35) in this case: 

2 p + l  ~ 1 <E>u. (p + i)2 k@oP~ + ~ (38) 

the first term is not convergent. Thus, it would be impossible to compute 
the mean value of the energy with respect to this normalized state. 

Now we shall use p-adic theory to try to resolve this problem. We use 
the same expression for the functions e,(x) by regarding x as a p-adic 
variable. For  the normalization we use the integral 

fQ e~(x) dx = 2"n! (39) 
p 

and we set 

1 
~.,op(x) = e.(x) (2"n!)1/2 (40) 

Consider the function formally obtained from u(x) of  equation (36) by 
regarding x as a p-adic variable and by substituting ~.(x) with ~.,Qp(x). 
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Also in this case, we can compute the norm of u(x) in L2(Qp, dx) and 
normalize it by putting again u,(x)  = u(x)[(2p + 1)/(p + 1) 2] 1/2. Notice that 
the number [(2p + 1)/(p + 1)2] 1/2 is p-adic. 

Now we compute 

1+  2 p + l  
(E)~ = ~  (p-+-i~zk~0 p 

2k  

1 2 p + 1  1 
- 2  + (p + 1) ~ 1 _p2 

p4 + 2 p 3 - - 6 p  - 3  
- 2 ( p  2 - 1)(p + 1) 2 (41) 

This energy value is correctly positive for every choice of p. 
We have shown that the theory of p-adic numbers in some cases is 

able to furnish a finite rational value of observable quantities in cases in 
which standard real (or complex) quantum mechanics would give rise to an 
infinite value. 

One can try to consider similar situations in quantum field theory. At 
the moment we have no definitive results in this direction, but we think that 
p-adic analysis is useful in perturbation theories for the computation of 
divergent integrals. 

This suggestion is also supported by the results of Smirnov (1991), 
where, by considering complex-valued fields of p-adic argument, it was 
shown that, in the Feynman integrals, only logarithmic divergences are 
involved. See also Smirnov (1992). 
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